Bimonads and Hopf Monads on Categories
نویسنده
چکیده
The purpose of this paper is to develop a theory of bimonads and Hopf monads on arbitrary categories thus providing the possibility to transfer the essentials of the theory of Hopf algebras in vector spaces to more general settings. There are several extensions of this theory to monoidal categories which in a certain sense follow the classical trace. Here we do not pose any conditions on our base category but we do refer to the monoidal structure of the category of endofunctors on any category A and by this we retain some of the combinatorial complexity which makes the theory so interesting. As a basic tool we use distributive laws between monads and comonads (entwinings) on A: we define a bimonad on A as an endofunctor B which is a monad and a comonad with an entwining λ : BB → BB satisfying certain conditions. This λ is also employed to define the category A B B of (mixed) B-bimodules. In the classical situation, an entwining λ is derived from the twist map for vector spaces. Here this need not be the case but there may exist special distributive laws τ : BB → BB satisfying the Yang-Baxter equation (local prebraidings) which induce an entwining λ and lead to an extension of the theory of braided Hopf algebras. An antipode is defined as a natural transformation S : B → B with special properties and for categories A with limits or colimits and bimonads B preserving them, the existence of an antipode is equivalent to B inducing an equivalence between A and the category ABB of B-bimodules. This is a general form of the Fundamental Theorem of Hopf algebras. Finally we observe a nice symmetry: If B is an endofunctor with a right adjoint R, then B is a (Hopf) bimonad if and only if R is a (Hopf) bimonad. Thus a k-vector space H is a Hopf algebra if and only if Homk(H,−) is a Hopf bimonad. This provides a rich source for Hopf monads not defined by tensor products and generalises the well-known fact that a finite dimensional k-vector space H is a Hopf algebra if and only if its dual H∗ = Homk(H,k) is a Hopf algebra. Moreover, we obtain that any set G is a group if and only if the functor Map(G,−) is a Hopf monad on the category of sets.
منابع مشابه
Notes on Bimonads and Hopf Monads
For a generalisation of the classical theory of Hopf algebra over fields, A. Bruguières and A. Virelizier study opmonoidal monads on monoidal categories (which they called bimonads). In a recent joint paper with S. Lack the same authors define the notion of a pre-Hopf monad by requiring only a special form of the fusion operator to be invertible. In previous papers it was observed by the presen...
متن کاملHopf Algebras and Their Generalizations from a Categorical Point of View
These lecture notes were written for a short course to be delivered in March 2017 at the Atlantic Algebra Centre of the Memorial University of Newfoundland, Canada. Folklore says that (Hopf) bialgebras are distinguished algebras whose representation category admits a (closed) monoidal structure. Here we discuss generalizations of (Hopf) bialgebras based on this principle. • The first lecture is...
متن کاملMonads and Comonads on Module Categories
Let A be a ring and MA the category of right A-modules. It is well known in module theory that any A-bimodule B is an A-ring if and only if the functor − ⊗A B : MA → MA is a monad (or triple). Similarly, an A-bimodule C is an A-coring provided the functor − ⊗A C : MA → MA is a comonad (or cotriple). The related categories of modules (or algebras) of −⊗A B and comodules (or coalgebras) of − ⊗A C...
متن کاملAdjunctions between Hom and Tensor as endofunctors of (bi-) module category of comodule algebras over a quasi-Hopf algebra.
For a Hopf algebra H over a commutative ring k and a left H-module V, the tensor endofunctors V k - and - kV are left adjoint to some kinds of Hom-endofunctors of _HM. The units and counits of these adjunctions are formally trivial as in the classical case.The category of (bi-) modules over a quasi-Hopf algebra is monoidal and some generalized versions of Hom-tensor relations have been st...
متن کاملGalois Functors and Entwining Structures
Galois comodules over a coring can be characterised by properties of the relative injective comodules. They motivated the definition of Galois functors over some comonad (or monad) on any category and in the first section of the present paper we investigate the role of the relative injectives (projectives) in this context. Then we generalise the notion of corings (derived from an entwining of a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008